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LONG UNIMODAL SUBSEQUENCES:

A PROBLEM OF F.R.K. CHUNG

By

J. Michael Steele

I. Introduction.

Let p denote a permutation of {l,2,...,n} and call

{a < a2 < ... < a t } a unimodal subsequence provided there is a

j such that

p(aI ) < P(a 2 )< ... < p(aj) > p(aj+l > ... > p(at )

or

p(a1 ) > p(a 2 )> ...> p(aj) < p(aj+) < ... < p(a t

Let £(n) denote the expected length of the longest unimodal subse-

quence of a randomly permuted subsequence i.e. i(n) = E p(p)/n', where

p
p(p) denotes the length of the longest unimodal subsequence of the

permutation p.

F.R.K. Chung (l3 conjectured that

lira i(n)/,= C exists
* n -*

The point of this note is to prove Chung's conjecture and show C = 2 v(.

Actually, Chung's conjecture is slightly more general than this introduc-

tory version, and this more general conjecture is obtained by the same

proof.
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II. Proof of F.R.K. Chung's Conjecture.

Suppose (X.,Y.), 1 < i < - are independent and uniformly

distributed in[0,1] 2. For any A C [0,i] let

I (A) = max{k: Y. < Y. < ... < Y. with

X. < X. < ... < X. , X. C A and
1I  12 3k k

i i C1..n

and

D n (A) = max{k: Yi > Y > ... > Y. with

X. < X. < ... < X. ,X. E A and

i. C 112,...,

Next set

U n max {max(I ([nt)+ D(Etl]), Dn[0,t]) + I
0 < t < 1

The desired proof will be obtained by applying known results to the random

variable U n To begin it is easy to check thatn

EU f L(n)
n



Next we note that by the work of Hammersley [2] and Kesten [3] that

almost surely and in LI we have the limits

(2.2) lir I (A)// = C V/T( and lim D (A)/y'r = C 4Tri
n -4 n- n

where X(A) is the Lebesgue measure of A = [0,1], and C is a

universal constant. The work of Logan and Shepp [9] and Vershik and

Kerov [5] established that C = 2.

For any N and I < k < N we define

U N(k) = max[I (O,k/n) + D ((k-l)/N,l), D (O,k/N) + I ((k-l))/N,l)]n n n n n

and
UN UN
U= max U (k)

n nn 1<k<N n

Clearly, for all N, U < UN and by the above mentioned limit results
n- n

we have

lim uN/n = 2 max (,-N + /(N-k+l)/N)
n n 1 <k<N

where the limit is almost sure and in L . The arbitrariness of N then

shows lim sup Un/n < 2 max (t + V7-t) = 2r a.s., so by Fatou's
n-- O<t<l

lemma we get lim sup R(n)/v-i < 2r.

For the opposite direction note the trivial bound

1 ([0,1 ]) + D 1n- n 2 n [2I]

so

lim inf t(n)/n > lim inf E(I (0,1 + D 2r
n-- n-N n 2 n 2

which completes the proof.
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III. The Generalization.

Instead of allowing the subsequence to make "one turn" as in

the unimodal case, one can consider subsequences which make k

turns. Explicitly, let I (n) be the expected length of the longest
k

subsequence S of a random permutation with the following property:

S can be decomposed into k+l segments which are monotone and

which alternate between increasing and decreasing.

The method of the preceeding section can be used easily to show

lim 9k(n)/ = 2 -1 +

all one has to do is define the proper analogue U (k) of U and arguen n

as before. One should also note that the preceding bounds also prove the

almost sure and L convergence of U (k)/n to 2ST .
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